Injection technique for concrete

The expansion-free anchoring for the professional user.

OVERVIEW Image: Strate of the streed of the stree

Approved in conjunction with FIS V/FIS VS/FIS VW: ■ Concrete ≧ C20/25 and ≦ C50/60

Suitable in conjunction with FIS VS and FIS EM: ■ Concrete ≥ C12/15

For fixing of:

 Steel constructions in general

- Suppor ts
- Rails
- High-r acks
- Consoles

- Railings
- Window elements
- Scaff olds
- Machines
- F acades

DESCRIPTION

- Specially for use with Injection mortars FIS V, FIS VS, FIS VW or FIS VT in non-cracked concrete.
- The anchor rods are also suitable for push-through installation, using special push-through elements.
- The mortar bonds the entire surface of the anchor rod to the wall of the drilled hole and largely seals the hole.
- Anchor rod made of stainless steel of the corrosion resistance class III e.g. A4 for outdoor use and in damp conditions.

Advantages/Benefits

- High-performance mortars allow high loads in non-cracked concrete.
- Various setting depths for different load levels and useful lengths.
- Quick manual installation without a setting tool reduces the work involved.

- Simple and quick push-through installation reduces installation time.
- Steel grade 5.8 or A4-70 guarantee the highest steel load-bearing strength and maximum permissible bending moments.

INSTALLATION

Type of installation

- Pre-positioned installation
- Push-through installation (with fischer push-through element)

Installation tips

- Drill the hole. Observe the desired setting depth / usable length.
- Clean the drill-hole thoroughly
- (blow out 4x, brush out 4x, blow out 4x)
 ≥18 mm with compressed air.
- Fill with the defined mortar quantity from the bottom of the drill-hole.
- If necessary screw the push-through element into position up to the depth marking.
- Then press the threaded rod down to the bottom of the hole (without setting tool), turning it slightly while doing so.

Pre-positioned installation

Push-through installation

- Bear in mind the curing time of the injection mortar.
- Install the building component. Observe the installation torque indicated in the technical data sheet.
 Brushes BS see page 84.

TECHNICAL DATA

Threaded rod ${\bf FIS}~{\bf A}~{\bf A4},$ stainless steel

Threaded rod FIS A, zinc plated steel

	zinc plated steel	stainless steel A4	approval	drill diameter	min. anchoring depth	number of scale units	min. usable length	max. anchoring depth	number of scale units	max. usable lepth
		Ross								
			ETA	dO	^h ef, min		t _{fix1} - h _{ef, min}	h _{ef, max}		t _{fix1} - h _{ef, max}
Туре	ArtNo.	ArtNo.		[mm]	[mm]		[mm]	[mm]		[mm]
FIS A M 6 x 75	090243	090437		8	50	2	17	66	2	1
FIS A M 6 x 85	090272	090438		8	50	2	27	72	2	5
FIS A M 6 x 110	090273	090439		8	50	2	52	72	2	30
FIS A M 8 x 90	090274	090440		10	64	2	17	80	3	1
FIS A M 8 x 110	090275	090441		10	64	2	37	96	3	5
FIS A M 8 x 130	090276	090442		10	64	2	57	96	3	25
FIS A M 8 x 175	090277	090443		10	64	2	102	96	3	70
FIS A M 10 x 110	090278	090444		12	80	3	18	97	5	1
FIS A M 10 x 130	090279	090447		12	80	3	38	117	5	1
FIS A M 10 x 150	090281	090448		12	80	3	335	120	5	19
FIS A M 10 x 200	090282	090449		12	80	3	108	120	5	69
FIS A M 12 x 140	090283	090450		14	96	4	30	124	6	2
FIS A M 12 x 160	090284	090451		14	96	4	50	144	6	2
FIS A M 12 x 180	090285	090452		14	96	4	70	144	6	22
FIS A M 12 x 210	090286	090453		14	96	4	100	144	6	52
FIS A M 12 x 260	090287	090454		14	96	4	150	144	6	102
FIS A M 16 x 175	090288	090455		18	125	8	32	154	11	3
FIS A M 16 x 200	090289	090456		18	125	8	57	172	11	3
FIS A M 16 x 250	090290	090457		18	125	8	107	192	11	40
FIS A M 16 x 300	090291	090458		18	125	8	157	192	11	90
FIS A M 20 x 245	090292	090459		24	160	20	63	219	29	4
FIS A M 20 x 290	090293	090460		24	160	20	108	240	29	28
FIS A M 24 x 290	090294	090461		28	192	28	72	260	42	4
FIS A M 24 x 380	090295	090462		28	192	28	162	288	42	66
FIS A M 30 x 340	090296	090463		35	240	53	68	303	79	5
FIS A M 30 x 430	090297	090464		35	240	53	158	360	79	38

Push-through element, stainless steel of the corrosion resistance class III, e.g. A4

Туре	ArtNo.	approval	min max. usable length	thread	qty. per box
		ETA	tfix	М	
			[mm]		pcs.
Push-through element M 8 x 3 A4	078230		3 - 6	M 8	10
Push-through element M 10 x 3 A4	078231		3 - 6	M 10	10
Push-through element M 10 x 8 A4	078232		8 - 16	M 10	10
Push-through element M 12 x 4 A4	078233		4 - 8	M 12	10
Push-through element M 12 x 10 A4	078234		10 - 20	M 12	10
Push-through element M 16 x 5 A4	078235		5 - 10	M 16	10
Push-through element M 16 x 10 A4	078236		10 - 20	M 16	10
Push-through element M 20 x 10 A4	043906		10 - 20	M 20	10

Injection technique for concrete

TECHNICAL DATA

	Cleaning brush for concrete		Compressed-air cleaning gun ABP
Туре	ArtNo.	for thread	qty. per box
		М	
			pcs.
BS ø 8	078177	M 6	1
BS ø 10	078178	M 8	1
BS ø 12	078179	M 10	1
BS ø 14	078180	M 12	1
BS ø 18	078181	M 16	1
BS ø 25	097806	M 20	1
BS ø 28	078183	M 24	1
BS ø 35	078184	M 27 / M 30	1
ABP	059456	Compressed-air cleani	ng gun ABP 1

LOADS

Mean ultimate loads, design resistant and recommended loads for single anchors of fischer Injection system FIS V, FIS VS and FIS VW used with threaded rods FIS A with large spacing and edge distance.

			Non-cracked concrete M 6 M 8 M 10 M 1																						
Anchor size						M 6	M 6				M 8)					M 1	2			
Kind of steel					gvz		A4	C		gvz		A4	C		gvz		A4		C		gvz		A4	C	
Steel grade				5.8	8.8	10.9	A4-70	1.4529	5.8	8.8	10.9	A4-70	1.4529	9 5.8	8.8	10.9	A4-7	0 1.	4529	5.8	8.8	10.9	A4-70) 1.4529	
Effektive	^h ef, min	[mm]				40					40					40						48			
anchorage depth	h _{ef, max}	[mm]				72					96					120						144			
Drill hole depth	ho	[mm]											h _o :	= h _{ef}											
Drill hole diameter	d _o	[mm]				8					10					12				14					
Mean ultimate load	ls N _u and V _u [kN]																								
Tensile	O° N _{II}	[kN]	^h ef, min			9.0					14.7					17.1	_					22.4			
	0 14	[KIN]	^h ef, max		16.0*	16.3	14	-	19.0*	29.0*	35.4		6.0*	30.0*	46.0*	55.3		11.0		44.0*	67.0*			9.0*	
Shear	90° V,,	[kN]	^h ef, min		8.0*	9.0	7.	0*	9.2*	14.6*	14.7	12	.8*	14.5*			7.1			21.1*	22.4				
Siledi	30 VU	[KIN]	^h ef, max	5.0*	8.0*	10.0*	7.	0*	9.2*	14.6*	17.0*	12	.8*	14.5*	23.2* 27.0* 20.3*					21.1*	33.7*	* 2	9.5*		
Design resistant loa	ads N _{Rd} and V _{Rd}	[kN]																							
Tensile	0° N _{Bd}	[kN]	^h ef, min		3.8					6.1		_				7.1					_				
Teriane	U NRO	[KIN]	^h ef, max			6.8			12.8	14	1.7	13.9	14.7	20.3	23.	0	21.	9 2	23.0	29.7	3	3.2	31.6	33.2	
Shear	90° V _{Bd}	[kN]	h _{ef, min}		6.4	6.7	4.5	5.6	7.4	8	.5	8.2	8.5			8.5						11.2			
Sileal	an ⊾Kq		^h ef, max	4.0	6.4	6.7	4.5	5.6	7.4	11.7	11.3	8.2	10.2	11.6	18.6	18.0	13.	D 1	16.2	16.9	27.0	26.	18.9	23.6	
Recommended load	ls N _{rec} and V _{rec} [kN]																							
Tensile	o∘ N _{rec}	[kN]	h _{ef, min}	n 2.7				4.4					5.1						6.7						
Tensile u	U Nrec	[KIN]	h _{ef, max}			4.8			9.2	10).5	9.9	10.5	14.5	16.	5	15.	7 1	16.5	21.2	2	3.7	22.5	23.7	
0	000 V	CI NI3	h _{ef, min}	2.9	4.6	4.8	3.2	4.0	5.3	6	.1	5.9	6.1			6.1						8.0			
Shear	90° V _{rec}	[kN]	h _{ef, max}	2.9	4.6	4.8	3.2	4.0	5.3	8.3	8.1	5.9	7.3	8.3	13.3	12.9	9.3	1	11.6	12.1	19.3	19.0	13.5	16.9	
Recommended bend	ding moment M _{re}	c [Nm]							-	1					<u> </u>		-								
	M _{rec}	• [Nm]		4.6	6.9	7.1	5.0	6.3	11.4	17.1	17.9	11.9	14.9	22.3	34.3	35.6	23.	3 2	29.7	38.9	60.0	62.3	42.1	52.6	
Component dimensi		acings an	d edge dist	ances											I										
Characteristic spacin	ng s _{cr. Np}	[mm]		135												290									
Characteristic edge	distance c _{cr. Np}	[mm]		70					100									145							
Minimum spacing 1)		[mm]				40										55									
Minimum edge dista	ance ^{1) C} min	[mm]				40									55										
Minimum structural	h	[mm]	^h ef, min			70					70								78						
component thicknes	s ^h min	[mm]	^h ef, max			102					126				150							174			
Clearance hole in fix	xture																								
to be attached for	d _f ≦	[mm]				7					9					12				14					
pre-positioned instal									_																
	rance hole in fixture to																		10						
be attached for $d_{f} \leq$		[mm]			9				11										16						
push-through install		[Nm]		r				10						_	_	40									
Required torque	T _{inst}	[Nm]	+1h ()		_	5					20							40							
Mortar filling quanti			t] ^h ef, min								2				2						3				
		lscale nui	t]h _{ef, max}	2												6									

Continued next page.

LOADS

Mean ultimate loads, design resistant and recommended loads for single anchors of fischer Injection system FIS V, FIS VS and FIS VW used with threaded rods FIS A with large spacing and edge distance.

												No	n-cracke	ed conci	rete											
Anchor size					M 16						M 20			M 24							M 30					
Kind of steel					gvz		A4	C		gvz		A4	C		g١	z		A4	C		gv	IZ		A4	C	
Steel grade				5.8	8.8	10.9	A4-70	1.4529	5.8	8.8	10.9	A4-70	1.4529	5.8	8.	8 10	.9	A4-70	1.452	9 5.8	8.	8	10.9	A4-70	1.4529	
Effektive	h _{ef, min}	[mm]				64					80					96	3						120			
anchorage depth	h _{ef, max}					192					240					28	8						360			
Drill hole depth	ho	[mm]											h ₀ =	• h _{ef}						_						
Drill holöe diameter	d _o	[mm]				18					24					28	3						35			
Mean ultimate loads N _u	and V _u [kN]																									
Tensile	o° N _{II}	[kN]	^h ef, min		_	34.6					48.3					63.	.5					1	38.7			
Tensue	0 110	[KN]	^h ef, max			110	0.0*	127.0*	19	1.0	171	1.0*	183.0*		260.6		24	7.0*	292.0	*		384	.5			
Shear	90° V,,	[kN]	^h ef, min		51	1.7	54	.8*	61.2*	9	6.6	85	.7*	88.2*		127.0		12	3.4*	140.2	*		177	177.5		
oliedi	30 ° U	[KN]	^h ef, max	39.2*	62.8*	74.0*	54	.8*	61.2*	98.0*	115.0*	85	.7*	88.2*	141	.2* 166	.0*	12	3.4*	140.2	* 224	.4*2	64.0*	19	6.2*	
Design resistant loads l	N _{Rd} and V _{Rd}	[kN]																								
Tensile	0° N _{Bd}	[kN]	^h ef, min	nin 14.4							20.1					26	.4				36.9					
Tensne	u "Kd	[KN]	^h ef, max						79.6					108	8.6					1	60.2					
Shear	90° V _{Rd}	[kN]	^h ef, min				8			88.5																
Sligat	90° vRd	[KN]	^h ef, max		50.2	49.3	35.1	43.8	49.0	78.4	76.7	54.9	68.6	70.6	113	3.0 110).7	79.1	98.7	112.2	179	9.5 1	76.0	125.8	157.0	
Recommended loads N	_{ec} and V _{rec} [kN]																								
T 11 00 N		EL-NIT	^h ef, min				14.3					18.8							26.3							
Tensile	O° N _{rec}	[kN]	^h ef, max						56.8					77.6						114.4						
0	000 V	EL NIT	^h ef, min	22.4		24	4.6		34.4					45.2						63.2						
Shear	90° V _{rec}	[kN]	^h ef, max		35.9	35.2	25.1	31.3	35.0	56.0	54.8	39.2	49.0	50.4	80	.7 79	.0	56.5	70.5	80.1	128	3.2 1	25.7	89.8	112.1	
Recommended bending	moment M _{re}	c [Nm]																								
	M _{rec}	- [Nm]		98.9	151.7	158.0	106.7	133.1	193.1	296.3	308.7	207.9	259.4	333.1	512	2.1 533	3.4	359.4	448.6	668.0	102	7.111)69.9	720.7	899.4	
Component dimensions	, minimum sp	acings and	d edge dist	ances																						
Characteristic spacing	^s cr, Np	[mm]				370					450					52	5						640			
Characteristic edge dista	ance c _{cr, Np}	[mm]		185					225							26	5			320						
Minimum spacing 1)	s _{min}	[mm]				65			85							10	5									
Minimum edge distance	¹⁾ ^C min	[mm]				65			85						105							140				
Minimum structural	h	[mm]	^h ef, min			96			120					144							180					
component thickness	h _{min}	[mm]	^h ef, max			224					280					33	6				420					
Clearance hole in fixture to be attached for	e d _f ≦							22																		
pre-positioned installation		[mm]			18				22				26							33						
Clearance hole in fixture to be attached for	e d _f ≦	[mm]		20				26					30							40						
push-through installation	push-through installation																									
Required torque	Tinst	[Nm]				60			_		120					15	_			300						
Mortar filling quantity			t] ^h ef, min		4						10					14				26						
		[scale uni	t]h _{ef, max}			11					29					42	2						79			

* Steel failure

¹⁾ For minimum spacing and minimum edge distance the above described loads have to be reduced (see "fischer Technical Handbook" or "fischer Design software COMPUFIX").

Values given above are valid under the following assumptions: - Sufficient mechanical cleaning of the drill hole using stainless steel brushes.

- Dry concrete, temperature range 50 °C long term temperature and 80 °C short term temperature.

All values apply for concrete C 20/25 without edge or spacing influences.

Design resistant loads: material safety factor γ_M is included. Material safety factor γ_M depends on the type of anchor. Recommended loads: material safety factor γ_M and safety factor for load γ_L = 1.4 are included.

The condition of application differ from those given in the European Technical Approval (ETA). For further detailed information about the ETA please contact the fischer technical service department. RG M threaded rods can be used as an alternative. Please refer to page 53 for suitable threaded rods.

