Injection technique for concrete

The expansion-free anchoring for the professional user.

OVERVIEW

Threaded rod
FIS A,
zinc-plated steel

Threaded rod FIS A,
stainless steel of the corrosion resistance class III

Approved in conjunction with FIS V/FIS VS/FIS VW:

- Concrete $\geqq \mathrm{C} 20 / 25$ and § C50/60

Suitable in conjunction

 with FIS VS and FIS EM:- Concrete \geqq C12/15

For fixing of:

- Steel constructions in general
- Railings
- Suppor ts
- Window elements
- Rails
- Scaff olds
- High-r acks
- Machines
- Consoles

DESCRIPTION

- Specially for use with Injection mortars FIS V, FIS VS, FIS VW or FIS VT in non-cracked concrete.
- The anchor rods are also suitable for push-through installation, using special push-through elements.
- The mortar bonds the entire surface of the anchor rod to the wall of the drilled hole and largely seals the hole.
- Anchor rod made of stainless steel of the corrosion resistance class III e.g. A4 for outdoor use and in damp conditions.

Advantages/Benefits

- High-performance mortars allow high loads in non-cracked concrete.
- Various setting depths for different load levels and useful lengths.
- Quick manual installation without a setting tool reduces the work involved.

- Simple and quick push-through installation reduces installation time.
- Steel grade 5.8 or A4-70 guarantee the highest steel load-bearing strength and maximum permissible bending moments.

INSTALLATION

Type of installation

- Pre-positioned installation
- Push-through installation (with fischer push-through element)

Installation tips

- Drill the hole. Observe the desired setting depth / usable length.
- Clean the drill-hole thoroughly
(blow out $4 x$, brush out $4 x$, blow out $4 x$) $\geqq 18 \mathrm{~mm}$ with compressed air.
- Fill with the defined mortar quantity from the bottom of the drill-hole.
- If necessary screw the push-through element into position up to the depth marking.
- Then press the threaded rod down to the bottom of the hole (without setting tool), turning it slightly while doing so.

Pre-positioned installation

Push-through installation

- Bear in mind the curing time of the injection mortar.
- Install the building component. Observe the installation torque indicated in the technical data sheet. Brushes BS see page 84.

TECHNICAL DATA

Threaded rod FIS A, zinc plated steel		Threaded rod FIS A A4, stainless steel								
	zinc plated steel	stainless steel A4	approval	drill diameter	min. anchoring depth	number of scale units	min. usable length	max. anchoring depth	number of scale units	max. usable lepth
Type	Art.-No.	Art.-No.	■ ETA	$\begin{gathered} \mathrm{d}_{0} \\ {[\mathrm{~mm}]} \end{gathered}$	$h_{\text {ef, min }}$ [mm]		$\begin{gathered} \mathrm{t}_{\mathrm{fix} 1} \mathrm{l}_{\mathrm{hef}, \mathrm{~min}} \\ {[\mathrm{~mm}]} \end{gathered}$	$\begin{aligned} & \mathrm{h}_{\mathrm{ef}, \max } \\ & {[\mathrm{~mm}]} \end{aligned}$		$\begin{gathered} \mathrm{t}_{\mathrm{fix} 1} 1-\mathrm{h}_{\mathrm{ef}, \max } \\ {[\mathrm{~mm}]} \\ \hline \end{gathered}$
FIS A M 6×75	090243	090437	\square	8	50	2	17	66	2	1
FIS A M 6×85	090272	090438	\square	8	50	2	27	72	2	5
FIS A M 6×110	090273	090439	\square	8	50	2	52	72	2	30
FIS A M 8×90	090274	090440	\square	10	64	2	17	80	3	1
FIS A M 8×110	090275	090441	\square	10	64	2	37	96	3	5
FIS A M 8×130	090276	090442	\square	10	64	2	57	96	3	25
FIS A M 8×175	090277	090443	\square	10	64	2	102	96	3	70
FIS A M 10×110	090278	090444	\square	12	80	3	18	97	5	1
FIS A M 10×130	090279	090447	\square	12	80	3	38	117	5	1
FIS A M 10×150	090281	090448	\square	12	80	3	335	120	5	19
FIS A M 10×200	090282	090449	\square	12	80	3	108	120	5	69
FIS A M 12×140	090283	090450	\square	14	96	4	30	124	6	2
FIS A M 12×160	090284	090451	\square	14	96	4	50	144	6	2
FIS A M 12×180	090285	090452	\square	14	96	4	70	144	6	22
FIS A M 12×210	090286	090453	\square	14	96	4	100	144	6	52
FIS A M 12×260	090287	090454	\square	14	96	4	150	144	6	102
FIS A M 16×175	090288	090455	\square	18	125	8	32	154	11	3
FIS A M 16×200	090289	090456	\square	18	125	8	57	172	11	3
FIS A M 16×250	090290	090457	\square	18	125	8	107	192	11	40
FIS A M 16×300	090291	090458	\square	18	125	8	157	192	11	90
FIS A M 20×245	090292	090459	\square	24	160	20	63	219	29	4
FIS A M 20×290	090293	090460	\square	24	160	20	108	240	29	28
FIS A M 24×290	090294	090461	\square	28	192	28	72	260	42	4
FIS A M 24×380	090295	090462	\square	28	192	28	162	288	42	66
FIS A M 30×340	090296	090463	\square	35	240	53	68	303	79	5
FIS A M 30×430	090297	090464	\square	35	240	53	158	360	79	38

Push-through element,
stainless steel of the corrosion
resistance class III, e.g. A4

Type	Art.No.	approval	min. - max. usable length	thread	qty. per box
		\square ETA		M	
			[mm]		pcs.
Push-through element M 8×3 A4	078230	\square	3-6	M 8	10
Push-through element M $10 \times 3 \mathrm{~A} 4$	078231	\square	3-6	M 10	10
Push-through element M $10 \times 8 \mathrm{~A} 4$	078232	\square	8-16	M 10	10
Push-through element M $12 \times 4 \mathrm{~A} 4$	078233	\square	4-8	M 12	10
Push-through element M $12 \times 10 \mathrm{~A} 4$	078234	\square	10-20	M 12	10
Push-through element M $16 \times 5 \mathrm{~A} 4$	078235	\square	5-10	M 16	10
Push-through element M 16×10 A4	078236	\square	10-20	M 16	10
Push-through element M 20×10 A4	043906	\square	10-20	M 20	10

Injection technique for concrete

TECHNICAL DATA

Cleaning brush for concrete

Compressed-air cleaning gun $\mathbf{A B P}$

Art.No.	for thread	qty. per box
	M	pcs.
$\mathbf{0 7 8 1 7 7}$	M 6	1
$\mathbf{0 7 8 1 7 8}$	M 8	1
$\mathbf{0 7 8 1 7 9}$	M 10	1
$\mathbf{0 7 8 1 8 0}$	M 12	1
$\mathbf{0 7 8 1 8 1}$	M 16	1
$\mathbf{0 9 7 8 0 6}$	M 20	1
$\mathbf{0 7 8 1 8 3}$	M 24	1
$\mathbf{0 7 8 1 8 4}$	M 27 / M 30	1
$\mathbf{0 5 9 4 5 6}$	Compressed-air cleaning gun ABP	1

LOADS

Mean ultimate loads, design resistant and recommended loads for single anchors of fischer Injection system FIS V, FIS VS and FIS VW used with threaded rods FIS A with large spacing and edge distance.

Continued next page.

LOADS

Mean ultimate loads, design resistant and recommended loads for single anchors of fischer Injection system FIS V, FIS VS and FIS VW used with threaded rods FIS A with large spacing and edge distance.

Anchor size Kind of steel			M 16									-crack	d concr					M 30									
			M 20	M 24																							
			gvz	A4	C	gvz			A4	C	gvz			A4	C	gvz			gvz A4	C							
Steel grade								5.8	8.8	10.9	A4.70	1.4529	5.8	8.8	10.9	A4.70	1.4529	5.8	8.8	10.9	A4.70	1.4529	5.8	8.8	10.9	A4-70 1.4529	
Effektive $\quad \mathrm{h}_{\text {ef, min }}$	[mm]		64					80					96					120									
anchorage depth $\mathrm{h}_{\text {ef }}$, max	[mm]		192					240					288					360									
Drill hole depth h_{0}	[mm]		$\mathrm{h}_{0}=\mathrm{h}_{\text {ef }}$																								
Drill holöe diameter d_{0}	[mm]		18					24					28					35									
Mean ultimate loads N_{u} and $\mathrm{V}_{\mathrm{u}}[\mathrm{kN}]$																											
Tensile $\quad 0^{\circ} \quad \mathrm{N}_{\mathrm{u}}$	[kN]	$\mathrm{h}_{\text {ef, min }}$						48.3										88.7									
		$\mathrm{h}_{\mathrm{ef}, \mathrm{max}}$				110.0*		$127.0 * 191.0$			171.0*		63.5 $183.0 *$ 260.6 8.2 127.0			247.0*		292.0* 384.5									
Shear $90^{\circ} \mathrm{V}_{\mathrm{u}}$	[kN]	$\mathrm{h}_{\text {ef, min }}$		51.7		$54.8 *$		61.2*	96.6		85.7*		88.2*	127.0		123.4*		$140.2 *$ * 177.5									
		$\mathrm{h}_{\mathrm{ef} \text {, max }}$		62.8*	74.0*		4.8*	61.2*	98.0*	$115.0 *$.7*	88.2*	141.2*	166.0*		3.4*	140.2*	224.4*	264.0*		6.2*					
Design resistant loads $\mathrm{N}_{\text {Rd }}$ and $\mathrm{V}_{\text {Rd }}$ [KN$]$																											
Tensile $\quad 0^{\circ} \mathrm{N}_{\text {Rd }}$	[kN]	$\underline{\mathrm{h}_{\text {ef, min }}}$	14.4					20.1					26.4					36.9									
		$\mathrm{h}_{\text {ef, max }}$	53.6					79.6					108.6					160.2									
Shear $90{ }^{\circ} \mathrm{VRd}$	[kN]	$\mathrm{h}_{\text {ef, min }}$	31.4	34.5				48.2					63.3					88.5									
		$\mathrm{h}_{\mathrm{ef} \text {, max }}$	31.4	50.2	49.3	35.1	43.8	49.0	78.4	76.7	54.9	68.6	70.6	113.0	110.7	79.1	98.7	112.2	179.5	176.0	125.8	157.0					
Recommended loads $\mathrm{N}_{\text {rec }}$ and $\mathrm{V}_{\text {rec }}[\mathrm{kN}]$																											
Tensile $\quad 0^{\circ} \mathrm{N}_{\text {rec }}$	[kN]	$\underline{\mathrm{h}_{\text {ef, min }}}$	10.3					14.3					18.8					26.3									
		$\mathrm{h}_{\text {ef, max }}$	38.3					56.8					77.6					114.4									
	[kN]	$\mathrm{h}_{\text {ef, min }}$	22.4	24.6				34.4					45.2					63.2									
Shear $\quad 90{ }^{\circ} \mathrm{V}$ rec		$\mathrm{h}_{\text {ef, max }}$	22.4	35.9	35.2	25.1	31.3	35.0	56.0	54.8	39.2	49.0	50.4	80.7	79.0	56.5	70.5	80.1	128.2	125.7	89.8	112.1					
Recommended bending moment $\mathrm{M}_{\text {rec }}$ [Nm]																											
$\mathrm{M}_{\text {rec }}$	[Nm]		98.9	151.7	158.0	106.7	133.1	193.1	296.3	308.7	207.9	259.4	333.1	512.1	533.4	359.4	448.6	668.0	1027.1	1069.9	720.7	899.4					
Component dimensions, minimum spacings and edge distances																											
Characteristic spacing $\mathrm{scr}_{\text {cr, }} \mathrm{Np}$	[mm]		370					450					525					640									
Characteristic edge distance $\mathrm{C}_{\mathrm{cr}, \mathrm{Np}}$	[mm]		185					225					265					320									
Minimum spacing ${ }^{11}$ ($\mathrm{s}_{\text {min }}$	[mm]		65					85					105					140									
Minimum edge distance ${ }^{11} \mathrm{c}_{\text {min }}$	[mm]		65					85					105					140									
Minimum structuralcomponent thickness $\quad \mathrm{h}_{\text {min }}$	[mm]	$\mathrm{h}_{\text {ef, min }}$	96					120					144					180									
	[mm]	$h_{\text {ef, max }}$	224					280					336					420									
Clearance hole in fixture to be attached for pre-positioned installation$\quad d_{f} \leqq$	[mm]		18					22					26					33									
Clearance hole in fixture to be attached for push-through installation	[mm]		20					26					30					40									
Required torque $\quad \mathrm{T}_{\text {inst }}$	[Nm]		60					120					150					300									
Mortar filling quantity	[scale unit] $\mathrm{h}_{\mathrm{ef} \text {, min }}$		4					10					14					26									
	[scale unit] ${ }_{\text {hef, max }}$		11					29					42					79									

* Steel failure
" For minimum spacing and minimum edge distance the above described loads have to be reduced (see "fischer Technical Handbook" or "fischer Design software COMPUFIX").
Values given above are valid under the following assumptions: - Sufficient mechanical cleaning of the drill hole using stainless steel brushes.
Dry concrete, temperature range $50^{\circ} \mathrm{C}$ long term temperature and $80^{\circ} \mathrm{C}$ short term temperature.
All values apply for concrete C $20 / 25$ without edge or spacing influences
Design resistant loads: material safety factor γ_{M} is included. Material safety factor γ_{M} depends on the type of anchor.
Recommended loads: material safety factor γ_{M} and safety factor for load $\gamma_{L}=1.4$ are included.
The condition of application differ from those given in the European Technical Approval (ETA). For further detailed information about the ETA please contact the fischer technical service department. RG M threaded rods can be used as an alternative. Please refer to page $\mathbf{5 3}$ for suitable threaded rods.

